
Statistical Inference

� Considering the simple model

Yi = �+ �Xi + ui

with

E(ui) = 0

var(ui) = �2 8 i
ui and uj independent for i 6= j

X non stochastic

� Make additional assumption that errors are normally distributed and can
test hypotheses about b� and b�

Consider b� we know
E(b�) = � and var(b�) = �2P

(Xi �X)2

but �2 is unknown and we have to estimate it.:

b�2 = P
(Yi � Y )2
n� k

which is an unbiased estimator.

� Now we can show that for k degrees of freedom

b� � �q
var(b�) s tn�k

)
b� � �
se(b�) s tn�k

which holds generally for multiple regression when testing one coe¢ cient
So we can derive con�cence intervals. For example for 30 observations and

k=2

Pr ob

"
�2:048 <

b� � �
se(b�) < 2:048

#
= 0:95

if we want upper or lower limits for � we can construct one sided intervals:

Pr ob [t < 1:70] = 0:95

Testing Hypotheses
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Usually we test the hypthesis that � = 0 and this is what is reported in the
t ratio in the Micro�t regression output

b� � 0
se(b�) = b�

se(b�) s tn�k
We can test � = 1 or some other value� but will need to calculate this

ourselves b� � 1
se(b�) s tn�k

Note:
For 28 degrees of freedome 5% probability points are �2:048 for the two

sided (tailed) test and 1.70 for the one sided. If both high and low t values are
considered as evidence against the hypothesis then we reject if the observed t
is greater than 2.048 or less than -0,2048. We could consider only very high or
very low values and use t7 1.7 depending on the hypothesis sign ie use a one
tail tes, which discounts either the negative or the postive as impossible .
For 5% probability points at 30degrees of freedom t becomes 2.042 and is

approximately 2.0. For most of our samples we expect to have 30 or more dofs
and so we use the rule of thumb that jtj > 2
Micro�t reports the signi�cance level:, esentially the area under the tails of

the curve at the t value that is calculated> So if the value of t is 2.0 with more
than thirty dgrees of freedom the level will be 0.05. If the t value were bigger
the level would decline and vice versa. So if the signi�cance level is less than
0.05 we can reject the null at the 5% level.
The chosen signi�cance level is not �God given�it is simply accepted practice

and can be adjusted to suit the purpose it was required for.
An important concern is the implication of the chosen signi�cance level:

Type 1 error: rejecting the null when it is true Prob(Type1) = chosen signi�cance level
Type 2 error: failing to reject the null when it is false Prob(Type2) depends on what � actually is

Note that Type 2 errors will decline as the sample increase
Type 2 error: failing to reject the null when it is false

F Test and the R Squared
Analysis of Variance: Have seen that we can break down the total sum of

squares X
(Y � Y )2 =

X
(bY � Y )2 +X(Y � bY )2

that is the total sum of squares (TSS) is equal to the explained sum of
squares (ESS) + the residual sum of squares (RSS)
So

R2 =
ESS

TSS
=

P
(bY � Y )2P
(Y � Y )2

=

P
(Y � Y )2 �

P
(Y � bY )2P

(Y � Y )2
1�
P
(Y � bY )2P
(Y � Y )2

= 1�RSS
TSS
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Assuming � = 0
If Yi are independent samples from a normal distribution Y s N(�; �2) then

(Y � �) =� s N(0; 1)X
i

(Yi � bY )2
�2

s {2n�1

losing one dof because we use the sample mean.
Now for

Yi = �+ �Xi + ui

ui s N(0; �2)

) Yi � (b�+ b�Xi) = bui = (Yi � bYi) s N(0; �2)
)

X
i

(Yi � bYi)2
�2

=

Pbui
�2

=
RSS

�2
s {2n�2

more generally
RSS

�2
s {2n�k�1

where k is the number of explanatory variables

similarly we can show that under the null that the explanatory variables are
all insigni�cant, ie have coe¢ cients that are not signi�cantly di¤erent to zero.

ESS

�2
=

P
(bYi � Y )2
�2

s {2k

Now if we take 2 independent chi-squared distributed variables X1and X2
then the ratio of the two variables divided by their degrees of freedom is an F
distribution

X1=n1
X2=n2

s F(n1;n2)

hence �
ESS
�2

�
=k�

RSS
�2

�
=n� k � 1

s F(k;n�k�1)

meaning
ESS=k

RSS=n� k � 1 s F(k;n�k�1)

this is now a test that the explanatory variables coe¢ cients (apart from the
constant) are not signi�cant jointly and we can compare with the F distribution
for 95%. If the F values exceeds the critical value we can reject the hypothesis

NB It is possible for a set of variables to be jointly signi�cant even if they
are individually insigni�cant.
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Can generalise this to create a test of when a subset of the variables in a
model are insigni�cant

Writing RRSS as the RSS obtained from the restricted model (when the r re-
strictions are imposed) and URSS as the RSS obtained from the full untestricted
model, it can be shown that under the null

(URSS �RRSS)=r
�2

s {2r

Meaning
(RRSS � URSS)=r
URSS=(n� k � 1) s F(r;n�k�1)

This is available in Micro�t as a variable deletion test in the Post Regression
Menu.
We could use this to test more than one restriction as long as they are line

-an example might be �1 + �2 = 0 and �3 = 1: We just impose the restrictions
to get RRSS.
If there was only one coe¢ cent being tested (eg �3 = 0) then we would get

(RRSS � URSS)
URSS=(n� k � 1) s F(1;n�k�1)

But the t ratio we discussed above is much easier to use in this case -in fact
F = t

Can show where t test comes from:

b� s N(�; var(b�))
V ar(b�) =

�2P
(Xi �X)2

thus �b� � ��q
�2P

(Xi�X)2

s N(0; 1)

Now we know Pbui
�2

=
RSS

�2
s {2n�2

4



Now a normal distribution divided by chi-squared will give a t distribution
so:

(b���)r
�2P

(Xi�X)2Pbui
�2

=

�b� � ��q
�2P

(Xi�X)2

� �2Pbui =
�b� � ��r Pbu2i =n�2P

(Xi�X)2

=

�b� � ��q Pb�2P
(Xi�X)2

=

�b� � ��q
varb� =

�b� � ��
se(b�) s tn�2

There is also a clear link between the t test and the r squared, which is the
squared correlation coe¢ cient when we only have one explanatory variable. We
can show

t2 =
(n� 2)r2
1� r2

giving a relation between the F test of � = 0 and r2 and

r2 =
t2

t2 + (n� 2)

giving a relation between the t test of � = 0 and r2
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